Question		on	Answer	Marks	Guidance
1	(a)		Mass of one hydrogen molecule = $2.02 \times 10^{-3} / 6.02 \times 10^{23}$	C1	
			Mass = 3.4×10^{-27} (kg)	A1	
	(b)		Mean k.e = 3 <i>kT</i> /2		
			Mean ke = 3/2 x 1.38 x 10 ⁻²³ x 1100	B1	
			Mean ke = 2.3×10^{-20} (J)	B1	
			Mean ke $\approx 2 \times 10^{-20}$ (J)	A0	
	(c)		$E_k = \frac{1}{2} mv^2$ 2.3 x 10 ⁻²⁰ = $\frac{1}{2}$ x 6.6 x 10 ⁻²⁷ v^2		Note : Full credit to be given for the use of 2×10^{-20} (J) from (b) giving $v = 2.5 \times 10^3$ (ms ⁻¹)
			$v^2 = (2 \times 2.3 \times 10^{-20} / 6.6 \times 10^{-27})$ $v = (2 \times 2.3 \times 10^{-20} / 6.6 \times 10^{-27})^{1/2}$ $v = 2.6 \times 10^3 \text{ (m s}^{-1})$	M1 A1	Note: If 3.36 x 10^{-27} is used from (a) (hydrogen molecules) then speed = 3.68 x 10^3 m s ⁻¹ and scores max 1 mark
	(d)		Helium atoms have a range of speeds / kinetic energies	M1	Accept equivalent wording or suitable diagram
			Hence some atoms have a velocity greater than 11 km s ⁻¹ / escape velocity	A1 8	

Question	Expected Answers	Marks	Additional guidance
2(a)(i)	(1 kWh is) the energy used/provided by a 1 kW device in 1 hour	B1	Allow 1 kWh = $60x60x1000$
			$= 3.6 \times 10^6 \text{ J}$
(a)(ii)	Energy used in kWh = (70/1000) x (7 x 24) = 11.8 kWh	C1	Any arithmetic error loses one
	Cost = 11.8 x 0.12 = £1.41 (or £1.4)	A1	mark
(b)(i)	use of E = mc $\Delta \theta$ e.g. E = 2 x 3800 x (18-3)	C1	
	$= 1.14 \times 10^5 $ J	A1	
(b)(ii)	Rate of energy loss = $1.14 \times 10^5 / 100 \times 60 = 19 \text{ W}$	B1	Allow ecf for cand's (b)(i) value
(C)	1. °C to 0 °C negative gradient line	B1	
	2. horizontal line on time a	B1	
	3. °C to -18 °C line of steeper -ve gradient (judged by eye) than in	B1	
	1		
	Total	9	

Question	Expected answers	Mark	Additional guidance
3(a)(i)	smoke particles move in random/haphazard/zig-zag/jiggling/jerky manner	B1	random/haphazard/zig-zag/ jiggling/jerky must be spelled
(a)(ii)	ANY 3 of the followina: B1 + B1 +B1		
(~)()	movement of smoke particles caused by (being hit by) randomly moving air molecules	(B1)	An observation must be linked to an appropriate conclusion
	smoke particles are continuously moving because the air molecules are	(B1)	
	continuously moving		Condone reference to "water
	smoke particles are visible but air molecules are not hence air molecules must be (very) small .	(B1)	molecules" in place of air molecules.
	small movement of smoke particles is due to the large numbers of air molecules hitting from all sides	(B1)	Condone air atoms/particles.
		B3	Max 3
(b)	(absolute) temp ∞ mean KINETIC ENERGY	C1	Allow $(\frac{1}{2})m < c^2 > = (3/2)kT$
	$\frac{1}{2}$ m _o (v _o) ² = $\frac{1}{2}$ m _h (v _h) ² OR mv ² is constant OR v ² \propto 1/m	C1	
	OR mean KE of oxygen = mean KE of hydrogen		
	$v_o = \sqrt{(m_h / m_o) \times 1800} = \sqrt{(.002/.032) \times 1800} = 450 \text{ m s}^{-1}.$	A1	
	Total	7	

Question	Expected answer	Mark	Additional guidance
4(a)(i)	pressure is inversely proportional to volume (WTTE)	B1	Accept P \propto 1/V or PV = constant
	for a fixed mass of gas at constant temperature (WTTE)	B1	
(a)(ii) 1	hyperbolic (i.e.Boyles law) curve shape	B1	
	looks asymptotic to both axes i.e does not touch axes	B1	
(a)(ii) 2	straight line through origin OR would extrapolate back to the	B1	
	origin		
(b)(i)	correct sub ⁿ in pV = nRT \Rightarrow 5 x 10 ⁵ x 0.040 = nx8.31x <u>288</u>	C1	
	OR sub ⁿ into pV = NkT \Rightarrow 5 x 10 ⁵ x 0.040 = Nx1.38x10 ⁻²³ x288		Any incorrect Kelvin temp (eg 188)
			correctly used treat as an AE.
	(hence) n = 5 x 10 ⁵ x 0.040 / (8.31 x 288) = 8.4 (8.36) mol	A1	Allow 8.35
	(hence) N = 5.03 x 10^{24} molecules \Rightarrow 8.36 moles		Use of 15 ^o C scores ZERO
(b)(ii)	from pV = nRT new n = 7.52 mol	C1	Allow ecf from b(i)
	moles lost is $8.36 - 7.52 = 0.84$ mol	C1	OR Pressure has dropped by 1/10
	= 2.3 (2.34) x 10 ⁻² kg (0.023)	A1	number of moles lost = 0.836 mol;
			Mass lost = $0.836 \times 0.028 = 2.3 \times 10^{-2}$
			kg
	Total	10	

Question		on	Expected Answers	Marks	Additional guidance
5	а	i	correct substitution in E = mc $\Delta\theta$: eg E = 0.08x4180x40	C1	Allow 80x4180/0.05x2460 (13376/4.92) for this
			ratio = 0.08x4180x40/5 x 10 ⁻⁵ x2460x40 = 2.7(2) x 10 ³	A1	C1 mark.
					1: 2700 does not score the second mark.
		ii	Any valid advantage: eg		
			car cooling systems	B1	First mark for valid situation
			because it absorbs large amounts of heat for a small rise in temp	B1	Second mark for correct explanation of <u>why</u> the
			OR ideal fluid for central heating systems		high value of the shc is helpful.
			because it releases large amounts of heat for a small drop in temp.		
			OR helps to maintain constant body temperature		
	_		since body is mainly water which absorbs lots of heat for small temp rise		
	b		labelled diagram (2 marks):		
			liquid in vessel with <u>electrical</u> neater (submerged) and thermometer	B1	Allow use of joule meter if convincingly
			ammeter connected in series between supply and neater AND voltmeter	B1	connected to heater and power supply i.e. 2
			connected across neater.		wires from power supply two wires to heater
			list of measurements (3 marks):		
			mass of liquid,	B1	Allow such things as "find mass" "known mass"
			initial and final temperature/change of temp (of the liquid)	B1	"10K temp rise" "time for 2 minutes" "known
			I, V and t values OR energy meter readings OR power and time	B1	power" etc
			explanation (1 mark):		
			$E = mc\Delta\theta$ rearranged to $c = E/m\Delta\theta$	B1	
			uncertainties (2 marks) each stated with explanation of remedy. e.g.		
			- heat losses (makes E or $\Lambda\theta$ uncertain) (solved by) insulating beaker/use lid		Allow ItV/m∆θ.
			- false temp reading (solved by) stir the liquid	B1	Do not allow "repeat the experiment".
			- temp continues to rise after heater switched off measure highest value	B1	Give credit for valid suggestions if mentioned
			- thermal capacity of vessel (solved by) take this into account in calculation	max 2	anywhere in the description of the experiment.
			Total	12	
				14	1